sexta-feira, 30 de novembro de 2007

Formação do petróleo e a sua extração.


Formação do petróleo


O Petróleo é uma substância viscosa, mais leve que a água, composta por grandes quantidades de Carbono e Hidrogênio (hidrocarboneto) e quantidades bem menores de Oxigênio, Nitrogênio e Enxofre.
A natureza complexa do Petróleo é resultado de mais de 1200 combinações diferentes de hidrocarbonetos.
Ele pode ocorrer nos estados:


Sólido - Asfalto
Líquido - Óleo crú
Gasoso - Gás natural


O Petróleo é formado pelo processo decomposição de matéria orgânica, restos vegetais, algas, alguns tipos de plâncton e restos de animais marinhos - ocorrido durante centenas de milhões de anos da história geológica da Terra.


Extração do petróleo


O sistema de extração do petróleo varia de acordo com a quantidade de gás acumulado na jazida. Se a quantidade de gás for grande o suficiente, sua pressão pode expulsar por si mesma o óleo, bastando uma tubulação que comunique o poço com o exterior. Se a pressão for fraca ou nula, será preciso ajuda de bombas de extração.


segunda-feira, 26 de novembro de 2007

fusão nuclear Fissão nuclear


Fissão nuclear

Na fissão (ou cisão) nuclear, um átomo de um elemento é dividido produzindo dois átomos de menores dimensões de elementos diferentes.
A fissão de
urânio 235 liberta uma média de 2,5 neutrons por cada núcleo dividido. Por sua vez, estes neutrons vão rapidamente causar a fissão de mais átomos, que irão libertar mais neutrons e assim sucessivamente, iniciando uma auto-sustentada série de fissões nucleares, à qual que se dá o nome de reacção em cadeia, que resulta na libertação contínua de energia.
Quando a massa total dos produtos da Fissão nuclear é calculada, verifica-se que é menor do que a massa original do átomo antes da cisão. A
teoria da relatividade de Albert Einstein dá a explicação para esta massa perdida: Einstein demonstrou que massa e energia são duas grandezas físicas conectadas por uma relação de equivalência. Desta forma, a massa perdida durante a cisão foi, de fato, convertida em energia. Einstein resumia esta relação de equivalência massa-energia na famosa equação:
Onde E é a energia, m a massa e c a
velocidade da luz. Uma vez que c é muito grande (300 mil quilômetros por segundo), E será realmente muito grande, mesmo quando se perde apenas uma pequena porção de massa.

Fusão nuclear




Na Fusão Nuclear, dois ou mais núcleos atómicos se juntam e formam um outro núcleo de maior número atômico. A fusão nuclear requer muita energia para acontecer, e geralmente liberta muito mais energia que consome. Quando ocorre com elementos mais leves que o ferro e o níquel (que possuem as maiores forças de coesão nuclear de todos os átomos, sendo portanto mais estáveis) ela geralmente liberta energia, e com elementos mais pesados ela consome.
O principal tipo de fusão que ocorre no interior das
estrelas é o de Hidrogênio em Hélio, onde dois prótons se fundem em uma partícula alfa (um núcleo de hélio), liberando dois pósitrons, dois neutrinos e energia. Mas dentro desse processo ocorrem várias reações individuais, que variam de acordo com a massa da estrela. Para estrelas do tamanho do nosso Sol ou menores, a cadeia próton-próton é a reacção dominante. Em estrelas mais pesadas, predomina o ciclo CNO.
Vale ressaltar que há
conservação da energia, e, portanto, pode-se calcular a massa dos quatro prótons e o núcleo de hélio, e subtrair a soma das massas das partículas iniciais daquela do produto desta reação nuclear para calcular a massa/energia emitida.
Utilizando a equação E=mc2, pode-se calcular a energia liberada, oriunda da diferença de massa. Uma vez que o valor do "c" é muito grande ( aprox. 3 . 108 m/s ), mesmo uma massa muito pequena corresponde a uma enorme quantidade de energia. É este fato que levou muitos engenheiros e cientistas a iniciar projetos para o desenvolvimento de
reatores de fusão para gerar eletricidade (por exemplo, a fusão de poucos cm3 de deutério, um isótopo de hidrogênio, produziria uma energia equivalente àquela produzida pela queima de 20 toneladas de carvão).